Internet of Things and Raspberry Pi

Hans-Petter Halvorsen

- Introduction
- Internet of Things
- <u>Raspberry Pi</u>
- <u>Raspberry Pi and Python Programming</u>
- DAQ and IoT Sensors
- Digital Sensor Interfaces
 - <u>SPI</u>
 - <u>I2C</u>
 - <u>1-Wire</u>
- NoSQL and MongoDB
- <u>ThingSpeak</u>
- MQTT ("IoT Communication Protocol")
- Raspberry Pi with MATLAB

Introduction

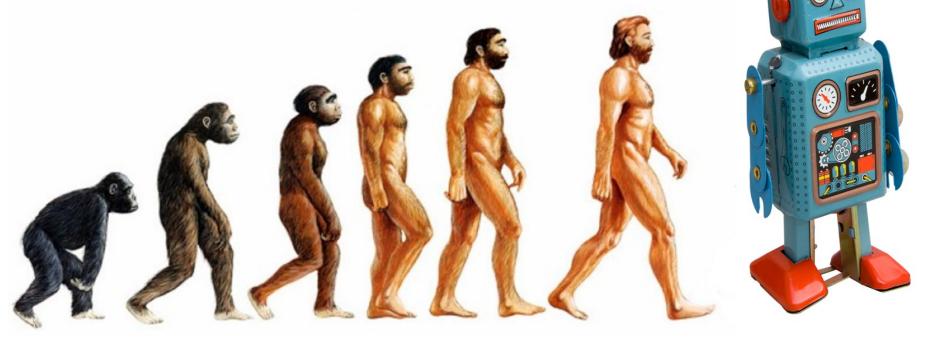
- With Internet of Things (IoT) and Cloud Services Datalogging has reach a new era.
- The Data are typically stored in the Cloud using traditional SQL databases or more modern systems like NoSQL databases or different IoT cloud services (e.g., ThingSpeak, MongoDB Atlas, etc.).
- We will use Raspberry Pi. Raspberry Pi is popular to use in different IoT applications.
- We will primarily use Python, but also MATLAB as programming languages.

Topics

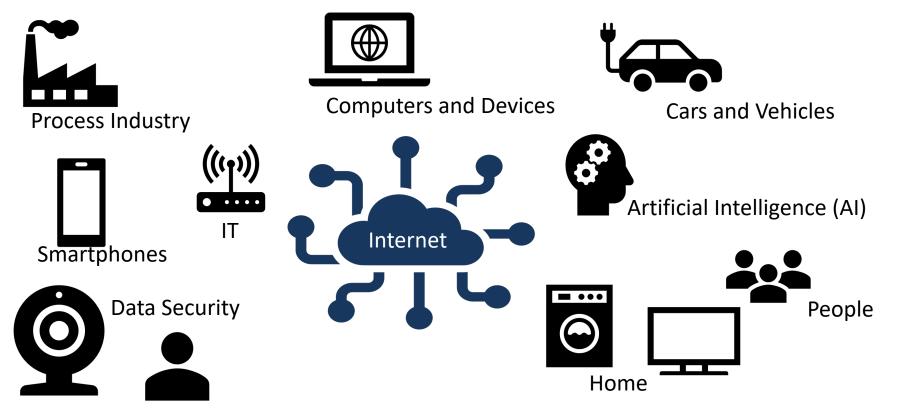
- Internet of Things (IoT)
- Microcomputers, Raspberry Pi and Linux
- Python (Raspberry Pi + Python are Powerful!)
- IoT Sensors, Digital Interfaces: SPI/I2C
- NoSQL (MongoDB)
- ThingSpeak (IoT Cloud Service)
- MQTT (IoT Communication Protocol)
- Raspberry Pi with MATLAB

Delivery

- Retrieve data from Temperature Sensors, e.g., TMP36 or/and an I2C/1-Wire Temperature sensor. Use the Python programming language.
- Lowpass Filter to remove noise from the signal
- Alarm Handling
- The data should be stored in a **MongoDB** database (NoSQL), either locally or in the cloud.
- The data should be also be stored in the cloud service ThingSpeak
- **MQTT** Communication
- Cyber Security: Give an overview of how Raspberry Pi OS (Linux) handles Security.
 For more details, see the web site



Internet of Things


Hans-Petter Halvorsen

Internet of Things (IoT)

IoT – Consumer oriented, Smart Home Solutions, etc.
IIoT – Industrial use of IoT Technology.
Industrial Internet of Things (IIoT) is another word for Industry 4.0

Internet of Things (IoT)

Soon everything will be connected to the Internet – even your Coffee Maker

Internet of Things (IoT)

Datalogging and Monitoring

Relevant Topics:

Database Systems

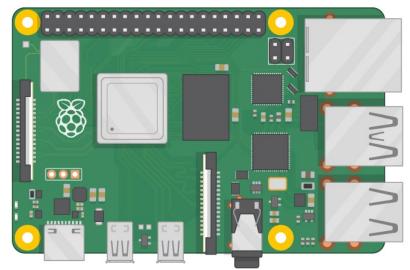
Sensor Technology

Machine Learning

Cloud Computing

Industrial Internet of Things and Industry 4.0

Cyber Security


Raspberry Pi

Hans-Petter Halvorsen

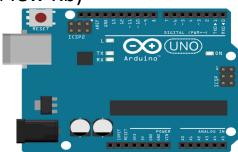
Raspberry Pi

- Raspberry Pi is a tiny (about 9x6cm), low-cost (\$35+), single-board computer that supports embedded Linux
- operating systems
- The recommended Operating System is called Raspberry Pi OS (Linux based)

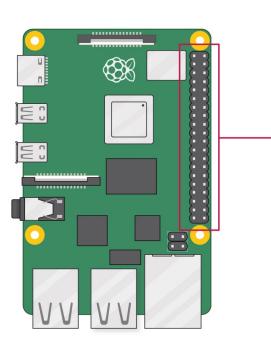
https://www.raspberrypi.org

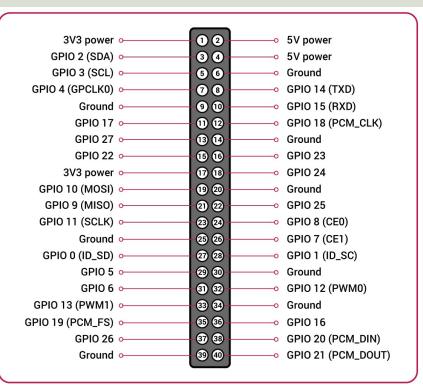
Raspberry Pi vs. Arduino

- Raspberry PI is a Microcomputer
- It has an ordinary Operating System (OS)
- You can connect USB devices, Keyboard, Mouse, Monitors, etc.
- It has a "hard-drive" in form of a microSD card
- RP has Bluetooth, Wi-Fi, and Ethernet connection
- RP has basically all the features an ordinary computer has but in a much smaller package
- Uptill 8 Gb RAM
- <u>RP runs Linux applications</u>



Both have Digital Pins


Both have SPI and I2C


Arduino (UNO) has also Analog Input Pins

- Arduino is a Microcontroller
- Arduino has a Bootloader and not an ordinary operating system
- Arduino is NOT a computer, only a small controller, whose purpose is to control things
- No Bluetooth, Wi-Fi (some models have), and Ethernet (but can be provided as socalled Shields)
- Very little RAM (a few Kb)
- Inexpensive

Raspberry Pi GPIO

A powerful feature of the Raspberry Pi is the GPIO (general-purpose input/output) pins. The Raspberry Pi has a 40-pin GPIO header as seen in the image

Raspberry Pi OS

- In order make your Raspberry Pi up and running you need to install an Operating System (OS)
- The OS for Raspberry Pi is called "Raspberry Pi OS" (previously known as Raspbian)
- Raspberry Pi runs a version of an operating system called Linux (Windows and macOS are other operating systems).
- To install the necessary OS, you need a microSD card
- Then you use the "Raspberry Pi Imager" in order to download the OS to the microSD card.

https://www.raspberrypi.org/software/

Start using Raspberry Pi

Wastebasket

Wastebasket

Raspberry Pi OS

https://www.raspberrypi.org/software/

- Put the microSD card into the Raspberry Pi
- Connect Monitor, Mouse and Keyboard
- Connect Power Supply

* * 09:59

 Follow the Instructions on Screen to setup Wi-Fi

Raspberry Pi and Python Programming

Hans-Petter Halvorsen

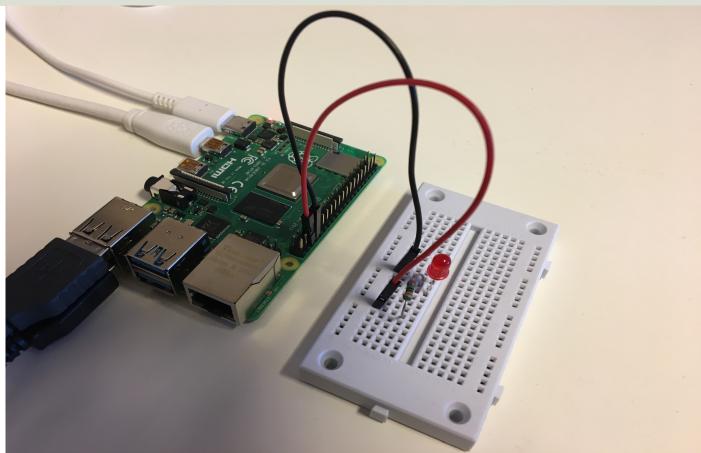
Raspberry Pi and Python

The Raspberry Pi OS comes with a basic Python Editor called Thonny

File Edit View Run Tools Help
python_ex.py 🛛 led_ex.py 🖄
1 print("Hello")
Shell x
with ccu_cx.py
Python 3.7.3 (/usr/bin/python3) >>> %Run python_ex.py
Hello
>>>

Raspberry Pi + Python are a powerful combination!

But you can install and use other Python Editors if you prefer


tps://www.raspberrypi.org/documentation/usage/python/

Python Packages with Thonny

Tools -> Manage packages...

		Manage packages for /usr/bin/python3	
Thonny - /home/pi/Documents/python_ex.py @ 1 : 1			
File Edit View Run Tools Help	numpy	Search on	PvPl
🖶 😰 🤷 C Manage packages Open system shell	indirip)		
python_ex.py X lec	Leave all facts around		
Open Thonny program folder	lazy-object-proxy	numpy	
1 print ("He Open Thonny data folder	logilab-common		
Manage plug-ins	Ixml	Installed version: 1.16.2	
Options	markupsafe	Installed to: /usr/lib/python3/dist-packages	
	mccabe		
	microdotphat	Latest stable version: 1.19.4	
	mote	Summary: NumPy is the fundamental package for array computing with Python.	
	motephat	Author: Travis E. Oliphant et al.	
		Homepage: https://www.numpy.org	
	mypy	PyPI page: https://pypi.org/project/numpy/	
	mypy-extensions	r yri page. <u>https://pypi.org/project/httmpy/</u>	
	numpy		
	oauthlib		
	olefile		
	pantilthat		
	parso		
Shell X SyntaxError: invalid syntax	pgzero		
>>> %Run led ex2.py	phatbeat		
>>> clear Traceback (most recent call last):	pianohat		
File " <pyshell>", line 1, in <module></module></pyshell>			
NameError: name 'clear' is not defined	picamera		
>>>>	piglow		
	pigpio	.	Close

LED Example: Setup and Wiring

LED Example: Python Code

Т	honny - /home/pi/Documents/led_ex.py @ 7:1	~	~ ×
File Edit View Run Tools Help			
🕂 🕯 🕯 🔉 🖬 🖬 🖬 💷 🔍 🕻			
python_ex.py ≈ led_ex.py ≈			
<pre>1 from gpiozero import LED 2 from time import sleep 3 4 pin = 16 5 6 led = LED(pin) 7 8 while True: 9 led.on() 10 sleep(1) 11 led.off() 12 sleep(1)</pre>			
Shell 🗶			
<pre>Python 3.7.3 (/usr/bin/python3) >>> %Run led_ex.py</pre>			_
Python 3.7.3 (/usr/bin/python3)			ļ

DAQ and IoT Sensors

Hans-Petter Halvorsen

DAQ and IoT Sensors

DAQ and IoT Sensors

- DAQ (Data Acquisition) and Sensors are needed and used in all IoT applications.
- DAQ is the process of getting data from the sensors into your software.
- Here will some popular IoT sensors be presented.

- IoT sensors comes in many flavors.
- Below, some IoT sensors are presented they can be programmed with Python.
- IoT Sensor Examples: TMP36, Thermistor 10K, TC74, BME280, and DHT11/22.

GPIO Python Libraries

- GPIO Zero
 - <u>https://pypi.org/project/gpiozero/</u>
- RPi.GPIO
 - <u>https://pypi.org/project/RPi.GPIO/</u>
- **smbus** (used for I2C communication)
- CircuitPython Typically, you would use the Python GPIO Zero Library, but it does not work so well with SPI/I2C Sensors

Digital Sensor Interfaces

Hans-Petter Halvorsen

Digital Interfaces

- Raspberry Pi has only Digital pins
- In order to connect and use Sensors we typically need to use one or more of these digital interfaces:
 - -SPI Interface
 - -I2C Interface
 - -1-Wire Interface

Enable Access to Interfaces

- SPI Interface
- I2C Interface
- 1-Wire Interface

	F	Raspberry Pi Cor	nfiguration		v ^ >
System	Display	Interfaces	Performance	Localisation	
Camera:		•	Enable	O Disable	
SSH:		0	Enable	• Disable	
VNC:		0	Enable	• Disable	
SPI:		۲	Enable	O Disable	
I2C:		۲	Enable	🔿 Disable	
Serial Port:		۲	Enable	 Disable 	
Serial Console:		۲	Enable	🔘 Disable	
1-Wire:		۲	Enable	O Disable	
Remote GPIO:		0	Enable	• Disable	
				Cancel	ОК

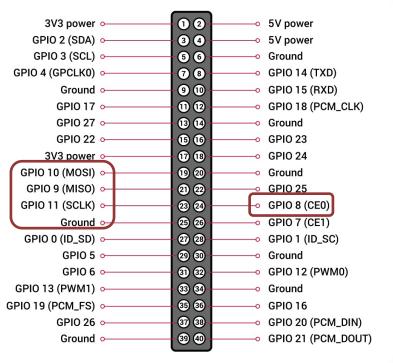
CircuitPython and Adafruit-Blinka

- CircuitPython adds the Circuit part to the Python part.
- Letting you program in Python and talk to Circuitry like sensors, motors, and LEDs!
- Typically, you would use the Python GPIO Zero Library, but it does not work with SPI/I2C Sensors
- On Raspberry Pi we need to install Adafruit-Blinka. This is a CircuitPython API that can be used on Linux devices such as the Raspberry Pi
- Adafruit-Blinka: <u>https://pypi.org/project/Adafruit-Blinka/</u>

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/

SPI

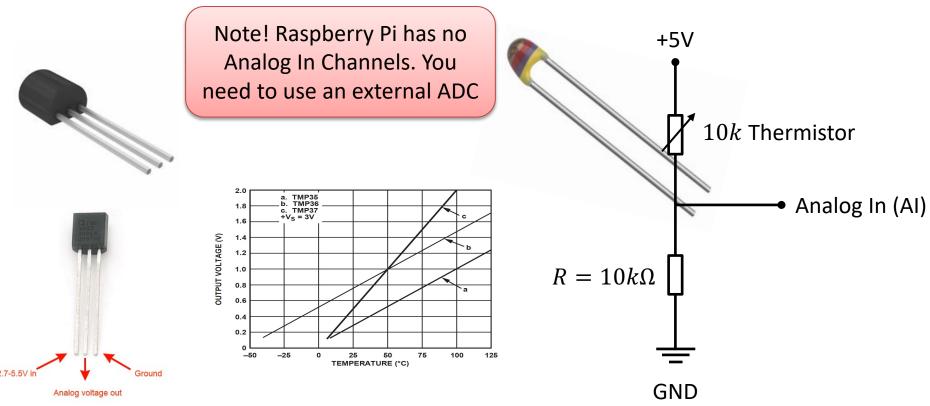
Hans-Petter Halvorsen


SPI

- Serial Peripheral Interface (SPI)
- SPI is an interface to communicate with different types of electronic components like Sensors, Analog to Digital Converts (ADC), etc. that supports the SPI interface
- Thousands of different Components and Sensors supports the SPI interface

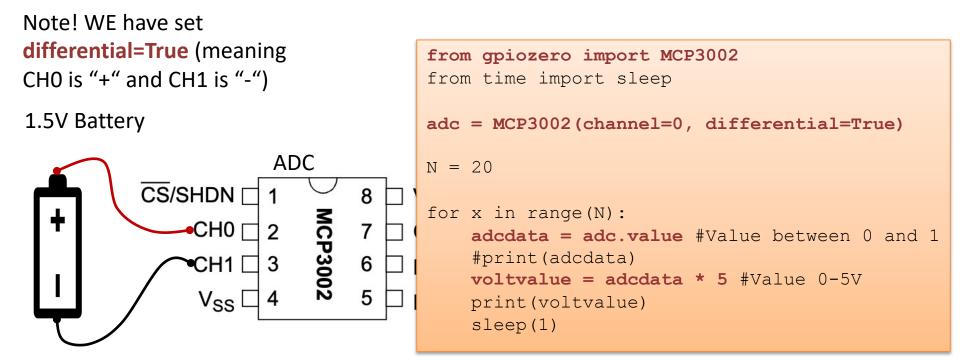
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/

SPI Wiring on Raspberry Pi


GPIO 40 pins Connector **B** UN C D UN c o

Analog Temperature Sensors

TMP36 Temperature Sensor


10k Thermistor Temperature Sensor

Example: Read Data from ADC

The **MCP3002** is a 10-bit analog to digital converter with 2 channels (0-1).

For test purpose we start by wiring a 1.5V Battery to the CH0 (+) and CH1(-) pins on the ADC

Measure temperature with an ADC

TMP36 Temperature Sensor

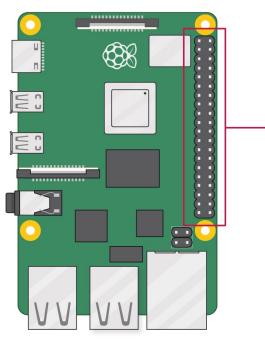
Wire a TMP36 temperature sensor to the first channel of an MCP3002 analog to digital converter and the other pins to +5V and GND

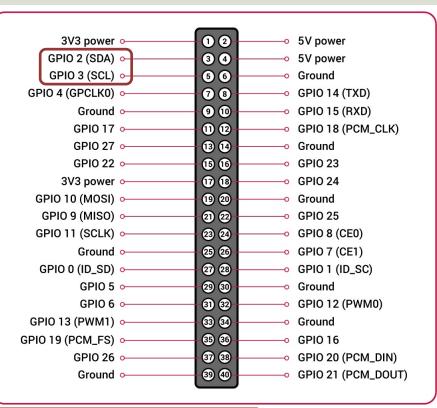
```
from gpiozero import MCP3002
from time import sleep
adc = MCP3002(channel=0, differential=False)
N = 10
for x in range (N):
    adcdata = adc.value #Value between 0 and 1
    #print(adcdata)
    voltvalue = adcdata * 5 #Value between 0V and 5V
    #print(voltvalue)
```

```
tempC = 100*voltvalue-50 #Temperature in Celsius
tempc = round(tempC,1)
print(tempC)
```

```
sleep(1)
```


I2C

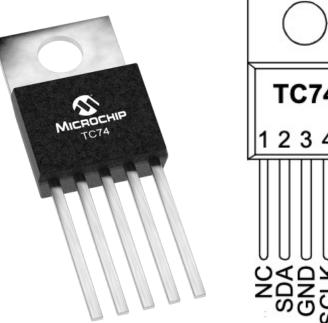

Hans-Petter Halvorsen

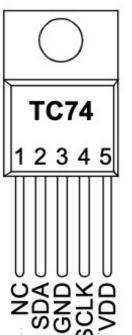

12C

- I2C is a multi-drop bus
- 2-Wire Protocol (SCL + SDA)
- Multiple devices can be connected to the I2C pins on the Raspberry Pi
- Each device has its own unique I2C address

I2C Wiring on Raspberry Pi

GPIO 40 pins Connector




Note! The I2C pins include a fixed 1.8 k Ω pull-up resistor to 3.3v.

TC74 Temperature Sensor

SMBus/I2C Interface

TC74A0-5.0VAT

- The TC74 acquires and converts temperature information from its onboard solid-state sensor with a resolution of ±1°C.
- It stores the data in an internal register which is then read through the serial port.
- The system interface is a slave SMBus/I2C port, through which temperature data can be read at any time.

Datasheet: https://ww1.microchip.com/downloads/en/DeviceDoc/21462D.pdf

TC74 Python Code Example

import smbus

This code shows the basic reading of the Sensor Data.

You can add a For Loop or a While Loop for reading Sensor Data at specific intervals.

You can plot the Data using matplotlib, save data to a File Or just: or send data to a cloud service like ThingSpeak, etc. print (data)

```
channel = 1
address = 0x48
bus = smbus.SMBus(channel)
data = bus.read_byte_data(address, 0)
print(data)
```

This gives the Temperature Value in Degrees Celsius, e.g., 22

BME280

- BME280 is a Digital Humidity, Pressure and Temperature Sensor from Bosch
- The sensor provides both SPI and I2C interfaces
- Adafruit, Grove Seeed, SparkFun, etc. have breakout board bords for easy connection to Arduino, Raspberry Pi, etc.

BME280 Python Example

```
import time
import board
import busio
import adafruit_bme280
https://circuitpython.readthedocs.io/projects/bme280/en/latest/
```

```
# Create library object using our Bus I2C port
i2c = busio.I2C(board.SCL, board.SDA)
bme280 = adafruit bme280.Adafruit BME280 I2C(i2c)
```

```
# OR create library object using our Bus SPI port
# spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
# bme_cs = digitalio.DigitalInOut(board.D10)
# bme280 = adafruit bme280.Adafruit BME280 SPI(spi, bme cs)
```

```
# change this to match the location's pressure (hPa) at sea level
bme280.sea level pressure = 1013.25
```

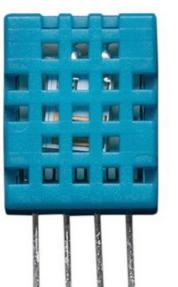
```
while True:
```

print("\nTemperature: %0.1f C" % bme280.temperature)
print("Humidity: %0.1f %%" % bme280.relative_humidity)
print("Pressure: %0.1f hPa" % bme280.pressure)
print("Altitude = %0.2f meters" % bme280.altitude)
time.sleep(2)

https://www.halvorsen.blog

1-Wire

Hans-Petter Halvorsen


Table of Contents

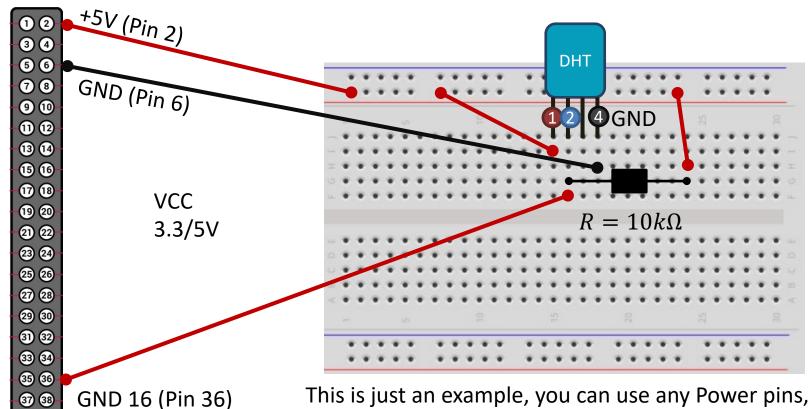
DHT11/DHT22

They are Breadboard friendly and easy to wire. They use a single-wire to send data.

DHT11

- Good for 20-80% humidity readings with 5% accuracy
- Good for 0-50°C temperature readings ±2°C accuracy
- 1 Hz sampling rate (once every second)
- Price: a few bucks

DHT22


DHT22 is more precise, more accurate and works in a bigger range of temperature and humidity, but its larger and more expensive

- 0-100% RH
- -40-125°C

Typically you need a 4.7K or 10K resistor, which you will want to use as a pullup from the data pin to VCC. This is included in the package

DHT11/DHT22

Raspberry Pi GPIO

GND 16 (Pin 36) 39 40

any of the GND pins and any of the GPIO pins

DHT11/DHT22 Python Example

```
import time
import board
import adafruit dht
dhtDevice = adafruit dht.DHT22(board.D18, use pulseio=False)
while True:
   try:
        temperature c = dhtDevice.temperature
       humidity = dhtDevice.humidity
       print(
            "Temp: {:.1f} C Humidity: {}% ".format(
           temperature c, humidity
   except RuntimeError as error:
        # Errors happen fairly often, DHT's are hard to read, just keep going
       print(error.args[0])
        time.sleep(2.0)
        continue
                                                          https://learn.adafruit.com/dht-
   except Exception as error:
                                                          humidity-sensing-on-raspberry-pi-with-
        dhtDevice.exit()
       raise error
                                                          gdocs-logging/python-setup
    time.sleep(2.0)
```

Errors happen fairly often, DHT's are hard to read because it needs precise timing. That's why you should use **try** in your code

https://www.halvorsen.blog

NoSQL and MongoDB

Hans-Petter Halvorsen

Table of Contents

MongoDB

- MongoDB is a cross-platform document-oriented database program.
- MongoDB is a NoSQL database program
- MongoDB uses JSON-like documents
- Home Page: <u>https://www.mongodb.com/</u>

Software:

- MongoDB Community Server Free version of the MongoDB Server which can be installed locally on your computer or a server
- MongoDB Atlas Premade MongoDB ready to use in the Cloud
- MongoDB Compass GUI for connecting to and manipulating your MongoDB database
- PyMongo MongoDB Driver for Python

SQL vs MongoDB

Note the following:

- A collection in MongoDB is the same as a table in SQL databases.
- A **document** in MongoDB is the same as a record in SQL databases.

MongoDB Compass

MongoDB Compass - localhost:27017	eta la conductada ante alta				-									
<u>connect View H</u> elp		MongoDB Compass - localhost:27017/Libra	ry						-		×			
Local	Databases	Connect View Help												
✓ 4 DBS 2 COLLECTIONS C	CREATE DATABASE	Local	Collections											
	Database Name 📤	✓ 4 DBS 2 COLLECTIONS C	CREATE COLLECTION	1										
HOST localhost:27017	Library	☆ FAVORITE	Collection Name [▲]	Documents	Avg. Document Size	Total Document Size	Num. Indexes	Total Index Size	Properties					
CLUSTER Standalone	Library	localhost:27017	BookDB	1	72.0 B	72.0 B		20.0 KB		-				
EDITION MongoDB 4.4.5 Community	admin	CLUSTER Standalone	BOOKDB				1	20.0 KB		Ê				
Q Filter your data	config	EDITION MongoDB 4.4.5 Community		Connect View	Compass - localhost:27017 w Collection Help		100					-		
> Library > admin	local	Q Filter your data		Local	2 COLLECTIONS	Library.Boo Document		+						>
> config		✓ Library ⊕		↓ DBS		Library.Boo	kDB			DOCUMENT	total size avg. size 72B 72B	INDEXES 1	LSIZE AVG.S	ize KB
> local		BookDB		HOST localhos	st-97017	Documents	Aggregatio	ons Sche	ma I	Explain Plan	Indexes	Validation		
		> admin > config		CLUSTER		OFILTER { field	l: 'value' }				> OPTIONS	FIND RESE	. C T	••
		> local		Standal EDITION		ADD DATA 🔻	L VIEW	≡ () ⊞			Displaying documents	s 1 - 1 of 1 < >	C REFRES	н
					DB 4.4.5 Community		ctId("608024789708 # Programming"	acadbcecc80d")						
				Q Filter yo			Knut Hamsun"							
+				 Library BookDE 	2									
>_MONGOSH BETA		+		> admin	2									
		>_MONGOSH BETA		> config										
				> local										
					•									
										_			_	

PyMongo

- The PyMongo package contains tools for interacting with MongoDB database from Python
- The PyMongo package is a native Python driver for MongoDB
- Install using PIP: pip install pymongo
- <u>https://pypi.org/project/pymongo/</u>

Python

Python script that creates a Database ("Library"), a Collection ("BookDB") and a Document.

In a SQL database we use the INSERT statement to insert data in a table.

In MongoDB we use the **insert_one()** and **insert_many()** methods to insert data into a collection.

```
import pymongo
```

```
client = pymongo.MongoClient("mongodb://localhost:27017/")
database = client["Library"]
collection = database["Book"]
```

document = { "Title": "C# Programming", "Author": "Knut Hamsun" }

x = collection.insert_one(document)

import pymongo import random import time from datetime import datetime

```
# Create Database
client = pymongo.MongoClient("mongodb://localhost:27017/")
database = client["MeasurementSystem"]
collection = database["MeasurementData"]
```

```
Ts = 10 \# Sampling Time
N = 10
for k in range(N):
```

```
# Generate Random Data
LowLimit = 20
UpperLimit = 25
MeasurementValue = random.randint(LowLimit, UpperLimit)
```

```
#Find Date and Time
now = datetime.now()
datetimeformat = "%Y-%m-%d %H:%M:%S"
MeasurementDateTime = now.strftime(datetimeformat)
```

```
# Insert Data into Database
document = { "MeasurementValue": MeasurementValue, "MeasurementDateTime":
MeasurementDateTime }
```

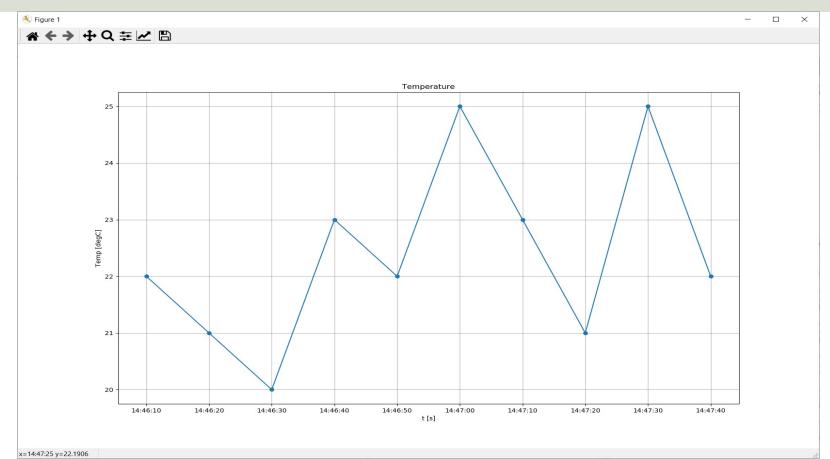
```
x = collection.insert_one(document)
```

```
# Wait
time.sleep(Ts)
```

import pymongo import matplotlib.pyplot as plt from datetime import datetime

```
# Connect to Database
client = pymongo.MongoClient("mongodb://localhost:27017/")
database = client["MeasurementSystem"]
collection = database["MeasurementData"]
```

t = [] data = []


```
# Retrieving and Formatting Data
for document in collection.find():
    MeasurementValue = document["MeasurementValue"]
    MeasurementDateTime = document["MeasurementDateTime"]
```

```
timeformat = "%Y-%m-%d %H:%M:%S"
MeasurementDateTime = datetime.strptime(MeasurementDateTime, timeformat)
```

data.append(MeasurementValue)
t.append(MeasurementDateTime)

```
# Plotting
plt.plot(t, data, 'o-')
plt.title('Temperature')
plt.xlabel('t [s]')
plt.ylabel('Temp [degC]')
plt.grid()
plt.show()
```

Plotted Data

https://www.halvorsen.blog

ThingSpeak

Hans-Petter Halvorsen

Table of Contents

ThingSpeak

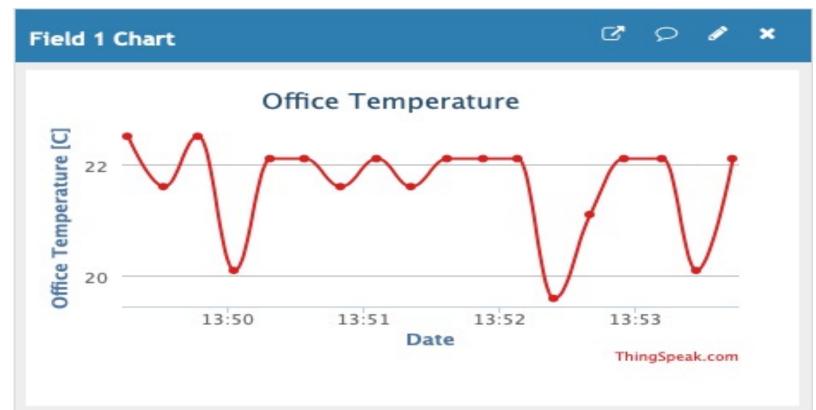
- ThingSpeak is an IoT analytics platform service that lets you collect and store sensor data in the cloud and develop Internet of Things applications.
- ThingSpeak has a free Web Service (REST API) that lets you collect and store sensor data in the cloud and develop Internet of Things applications.
- It works with Arduino, Raspberry Pi, MATLAB and LabVIEW, Python, etc.

https://thingspeak.com

```
import thingspeak
import time
from gpiozero import MCP3002
```

A Free ThingSpeak Channel can only be updated every 15 sec

```
adc = MCP3002(channel=0, differential=False)
```


time.sleep(15)

```
channel = thingspeak.Channel(id=channel_id, api_key=write_key)
```

```
N = 10
for x in range(N):
    #Get Sensor Data
    adcdata = adc.value #Scaled Value between 0 and 1
    voltvalue = adcdata * 5 # Value between 0V and 5V
    tempC = 100*voltvalue-50 # Temperature in Celsius
    tempC = round(tempC,1)
    print(tempC)
    #Write to ThingSpeak
    response = channel.update({'field1': tempC})
```

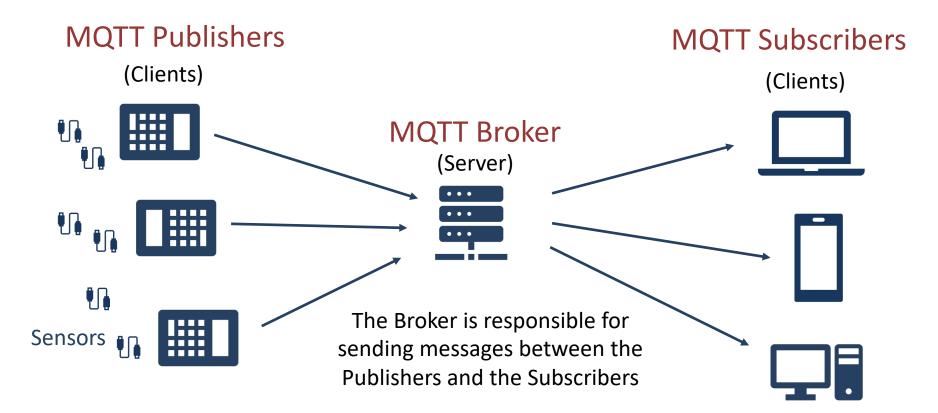
Write TMP36 Data

Here we see the Temperature Data in ThingSpeak:

https://www.halvorsen.blog

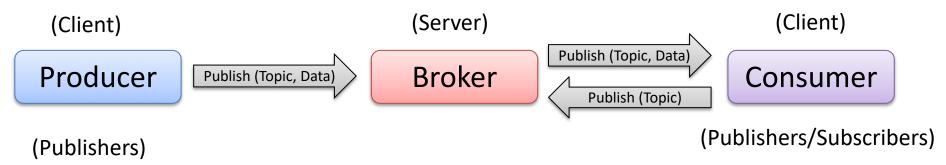
MQTT

Hans-Petter Halvorsen


Table of Contents

MQTT

MQTT is a popular IoT Communication Protocol


- Message Queueing Telemetry Transport (MQTT) is an IoT connectivity protocol
- MQTT is used in applications with thousands of sensors
- MQTT is efficient in terms of bandwidth, battery, and resources
- MQTT uses a publish/subscribe model
- MQTT can be implemented using standard HTTP calls
- M2M (machine to machine) Communication

MQTT Scenario

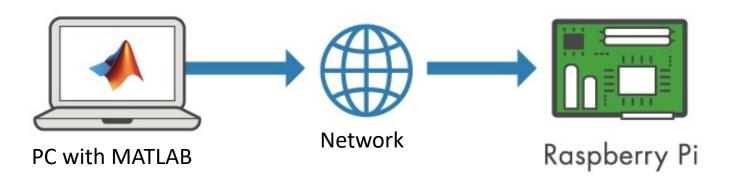
Publish/Subscribe Model

Typically, we have what we call **Producers** (Publishers), and we have **Consumers**, which can be both Publishers and Subscribers.

An MQTT Client Publishes a Message to the Broker

Other Clients can Subscribe to the Broker to receive Messages

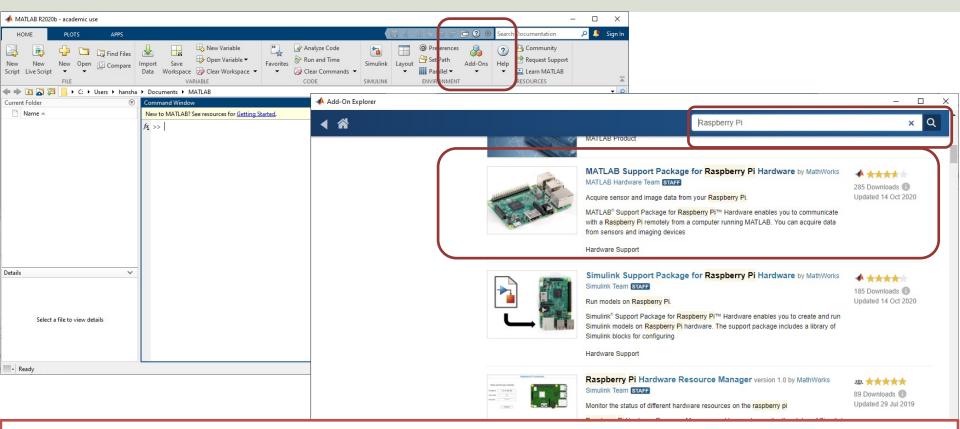
https://www.halvorsen.blog



Raspberry Pi with MATLAB

Hans-Petter Halvorsen

Table of Contents


Raspberry Pi + MATLAB

With MATLAB support package for Raspberry Pi, the Raspberry Pi is connected to a computer running MATLAB. Processing is done on the computer with MATLAB.

https://mathworks.com/hardware-support/raspberry-pi-matlab.html

MATLAB Support Package for Raspberry Pi

Getting Started with MATLAB Support Package for Raspberry Pi: <u>https://youtu.be/32ByiUdOwsw</u>

MATLAB Example

📣 MATLAB R2020b - academic use			– 🗆 X				
HOME PLOTS APPS	EDITOR PUBLISH VIEW	🔚 🔏 🛍 🛍 🔁 🗇 🚍 🕐 Search	h Documentation 🛛 🔎 🐥 Hans-Petter 🗸				
Image: Print File Image: Print File Image: Print File New Open Save Image: Print File Image: Print File Image: Print File Image: Print File Image: Print File File NAVIGAT		nd 🖳 Advance Run and	2				
<table-cell-rows> 🔶 🔁 🌄 🎾 📙 🕨 C: 🕨 Users 🕨 hansha</table-cell-rows>	Documents MATLAB		ې 🛨				
Current Folder 💿	Editor - C:\Users\hansha\Documents\MATLAB\blinkLED.m	(e) ×	Workspace 🐨				
Name A Value Name A Value Name A Value 1 Function blinkLED() 2 3 - r = raspi; 4 5 - for i = 1:10 6 - disp(1); 7 - writeLED(r, "LEDO", 0); 8 - pause(0.5); 9 - writeLED(r, "LEDO", 1) 10 - pause(0.5); 11 - end 12 13 - end 14							
Details							
Select a file to view details	Command Window >> Calt DlinkLED.m >> blinkLED 1 2 3 /x 4						

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

